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Abstract—Two-factor Hull-White/G2++4 trinomial
trees can reproduce the continuous model’s correla-
tion structure by using a high discretization resolu-
tion, or by tweaking the transition probabilities. This
paper investigates the approaches’ correlation error
and gives minimal discretization resolutions that ob-
serve some error limit. The results help make value-
at-risk calculations more efficient.
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1 Handling Discrete Transitions

Given the usual two-factor Hull-White [2] dynamics in a
G2++ notation

r(t) = x@)+y@)+ o), r(0)=ro,

z(t) = —ax(t)dt+ odWi(t), =(0)=0,

y(t) = —by(t)dt +ndWs(t), y(0) =0,
dW1 (t)dWQ(t) = pdt,

a trinomial tree implementation [3] must set discrete joint
transition probabilities that match the marginal distribu-
tions of z(t) and y(t), and lead to a discrete correlation
that approximates p.

One way to determine the transition probabilities is Brigo
and Mercurio’s [1] one (BM):

1: For every node, determine the marginal transition
probabilities and the resulting uncorrelated joint tran-
sition probabilities II°.

2: Set the transition probabilities II” to
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3: If II” contains negative values, set II? = II°.

This approach “loses” correlation in step 3; the remedy
is to increase the discretization resolution.
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One alternative is effective and computationally cheap—
discard step 3, and modify step 2 (BM’) [2]:

2: Set II, to:

110 + sT14.
max{s|s € [0,1], 1% 4+ sII® >, 0}

mr =

g =
Intuitively, II® moves—proportinally to p—mass towards
the matrix diagonals; 5TI® moves as much of that mass

as possible without violating the probability constraints.
The computational costs are negligible, because s is

5= % min{Hgd’ 4H2m7 4H9nd7 4H2@u7 4Hgm’ H?lu}7 p> 0
p | min{llY 4110 4110 , 4119 4119 T19.}, p <O

In z,y-regions where the mean reversion is weak, it is
equivalent to the old approach; in outer regions (i.e., with
large x, y), it avoids falling back to the uncorrelated prob-
abilities, and thus a large correlation loss.

Finally, the transition probabilities can be tweaked even
further—a minimization or a brute-force approach can
determine the probabilities that best match p, subject to
the marginal distribution constraints (BF') [4].

2 Minimal Discretization Resolution

No approach can guarantee to exactly match the desired
instantaneuous correlation if p is large; all must rely on
higher discretization resolutions to match the instanta-
neous, and in turn the terminal, correlation more closely.
We can quantify this required increase in the discretiza-
tion resolution for BM, BM’, and BF.

Let I be the number of discrete equispaced time steps,
and Corr, ,(7) the tree’s discrete terminal correlation at
time step ¢. Let E; denote the relative error between
this discrete correlation and the analytical correlation
Corr, , (t) at time ¢:!

_ Cotta, ([#/3]) = Corr,,, (1

B =
! Corry (t) ’

2 b(1 — —(a+b)t

Corrg 4 (t) pVab(l — ¢ )

(a+b)V1 —e—2aty/1 — e—20t’

1Because step 3 loses correlation, the numerator is negative; we
revert the sign for convenience.



FE; has several properties:

e It increases with p: BM produces negative, invalid
transition probabilities more often; BM’ and BF are
unable to match higher p values closely.

e [t increases with ¢ due to the cumultive way correla-
tion is lost in the tree; we thus only examine Fr.

e It increases with the process parameters a, b: higher
mean reversion skews the marginal probabilities due
to the discretization; the smaller of the outer prob-
abilities can then lead to negative values or mis-
matches.

e It does not, however, depend on ¢ and 7, because
the spatial discretizations of x and y are determined
by their variances.

To illustrate the necessary increase in the discretization
resolution, let If . (a,b, p) be the minimal discretization
resolution I such that Er < e, given the process param-
eters a,b, p. Figure 1 gives such (empirically computed)
minimal discretization resolutions which guarantee that
Er < 1% (for T =1 and p = 0.9, with the BM approach).
Figure 2 compares BM, BM’ and BF for p = .95 and three

levels of b.

Figure 1: Minimal discretization resolution for BM such
that Er—1 < 1%, as a function of @ and b (p = 0.9).
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Figure 2: Minimal discretization resolution for BM, BM’,
BF such that Er—; < 1%, as a function of a (p = 0.95).
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Table 1 gives approximate minimal discretization resolu-
tion for BM, BM’; BF and various e, p, obtained via em-
pirical search for I,,,;, and OLS regression. Note: T =1

Table 1: Approximate minimal discretization resolution
for a,b,p and e: IS (a,b) = int + cqoa + cpb + cqopab +

min

ce2a? 4 cp2b?. WLOG, a <b. T =1, a,b < 2.

e=2% e=1% e=.5%

BM: p=.9 int -110.85 -138.70 -164.07
Ca 135.85 89.52 140.90

3 484.01 666.02 777.95

Cab -151.77  -111.76 -162.40

C,2 158.93 154.99 173.78

Cp2 142.43 131.62 172.23

p = .95 int -463.59 -571.17 -670.40
Ca 375.01 369.93 402.28

cp 2142.73 2746.27 3290.64

Cab -469.65 -500.40 -525.16

C,2 587.01 635.99 641.48

Cp2 499.75 554.13 661.26

BM’: p=.9 int -15.47 -27.26 -41.67
Ca 20.39 29.04 38.26

cp 73.23 123.88 188.64

Cab -18.53 -29.34 -38.39

C,2 29.09 41.88 52.53

Cp2 25.81 38.48 52.54

p = .95 wnt -42.68 -75.41 -124.41
Cq 43.46 61.03 99.58

cp 178.64 329.04 546.68

Cab -41.15 -70.10 -103.20

C,2 63.74 104.52 138.34

Cp2 59.69 103.12 154.79

BF: p=.9 nt 11.88 8.28 5.71
Ca 1.49 J11.77 -20.06

ch -6.61 9.05 21.18

Cab -35.12 -45.23 -69.11

C,2 23.85 33.76 48.87

Cp2 16.08 18.15 27.10

p=.95 int 827 159 5.79
Ca -31.34 -69.41 -148.79

ch 21.61 69.17 152.67

Cab -90.78 -181.58 -290.69

[ 67.72 135.71 212.79

cp2 33.78 59.93 97.57

is used for these approximations; to obtain I,,;, for other
T, one can rescale the process parameters a,b, p before
using the regressions. Clearly, even relatively moderate
values for p, a, b require high discretization resolutions in
case of BM; BM’ is preferable. BF further reduces the
necessary discretization resolution, but at a higher com-
putational cost; it is an alternative when a tree setup
becomes memory-bound.

Finally, the regressions help minimze the discretization
resolutions and thus the computational costs for the main
task in a financial organization’s daily value-at-risk cal-
culation: pricing large product portfolios under different
interest rate scenarios and thus Hull-White setups.
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