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Modern computer architecture provides a special instruction|the fused multiply-add

(FMA) instruction|to perform both a multiplication and an addition operation at the

same time. In this paper newly developed radix-2, radix-3, and radix-5 FFT kernels that

e�ciently take advantage of this powerful instruction are presented. If a processor is

provided with FMA instructions, the radix-2 FFT algorithm introduced has the lowest

complexity of all Cooley-Tukey radix-2 algorithms. All oating-point operations are

executed as FMA instructions. Compared to conventional radix-3 and radix-5 kernels

the new radix-3 and radix-5 kernels greatly improve the utilization of FMA instructions

resulting in a signi�cant complexity reduction. In general, the advantages of the FFT

algorithms presented in this paper are their low complexity, their high e�ciency, and

their striking simplicity. Numerical experiments show that FFT programs using the

new kernels clearly outperform conventional FFT routines, even the best available FFT

programs.

Keywords: DFT, FFT, Kronecker products, arithmetic complexity, fused multiply-add,

multiply-add optimized algorithms

1. Introduction

The fast Fourier transform (FFT) is one of the principal algorithmic tools in the

�eld of scienti�c computing. The FFT has such a large number of applications that

it is not an overstatement to call it ubiquitous.

Though the invention of the FFT algorithm can be traced back to Gauss, the

rediscovery by Cooley and Tukey in their 1965 paper

1

is responsible for the algo-

rithm's widespread use.

Numerous studies have been published on how the FFT can be implemented

e�ciently on advanced computer systems. The �rst step was made by Pease

14

in

1968. In his pioneering paper, which was not based on the Cooley-Tukey approach,

Pease used a Kronecker product formulation to describe an FFT algorithm well

suited for implementations on parallel computers.

By algebraically manipulating Kronecker product formulas, di�erent FFT pro-
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grams that achieve the same computation but have di�erent performance charac-

teristics can be obtained. In this way algorithms can be made architecture adaptive

to better match speci�c computer architectures (Karner, Ueberhuber

7

, Krommer,

Ueberhuber

10

). Therefore Kronecker products are used in the present paper as a

fundamental tool for the development and description of FFT algorithms.

Modern computer processors provide a special instruction to perform �a�b�c,

i. e., a combination of a multiplication and an addition operation|called multiply-

add or fused multiply-add (FMA) operation|in the same amount of time needed

for a single oating-point addition or multiplication.

In this paper radix-2, radix-3, and radix-5 FFT kernels that e�ciently take

advantage of this powerful instruction are presented. If a processor is provided with

FMA instructions, the radix-2 FFT algorithm introduced has the lowest complexity

of all Cooley-Tukey radix-2 algorithms. All oating-point operations are executed

as FMA instructions. Compared to conventional radix-3 and radix-5 kernels the

new radix-3 and radix-5 kernels greatly improve the usage of FMA instructions

resulting in a signi�cant complexity reduction.

Numerical experiments show that FFT programs using the new kernels clearly

outperform conventional FFT routines, even the most widely used and most e�cient

FFT packages.

Another advantage of the FFT kernels presented in this paper is the fact that

these new kernels are fully \compatible" with conventional kernels, making it easy

to incorporate them into existing FFT frameworks.

2. Arithmetic Complexity

Counting the number of necessary computational steps is an abstract method

of assessing the resource consumption of an algorithm. In spite of the abstraction

(using computational steps instead of time measurement), a complexity analysis

is not independent of particular hardware properties. There may be signi�cant

di�erences in the complexity indices obtained for the very same algorithm due to

the fact that for each computer the elementary unit of work may be di�erent. In the

�eld of numerical data processing, it is common to regard a oating-point operation

as the elementary unit of work. The evaluation of a discrete Fourier transform,

i. e., the evaluation of a particular matrix-vector product involves only addition

and multiplication operations. The following de�nitions are therefore restricted to

addition and multiplication operations.

De�nition 1 (Complex Arithmetic Complexity) Let �

C

2 IN (�

C

2 IN) de-

note the number of complex multiplication (addition) operations needed to perform a

speci�c numerical computation. Then, the complex arithmetic complexity is de�ned

by �

C

:= �

C

+ �

C

:

De�nition 2 (Real Arithmetic Complexity) Let �

R

2 IN (�

R

2 IN) denote

the number of real multiplication (addition) operations needed to perform a speci�c

numerical computation. Then, the real arithmetic complexity is de�ned by �

R

:=

�

R

+ �

R

:

2



A nontrivial complex multiplication needs 4 real multiplications and 2 real ad-

ditions (\4 + 2 method") and a complex addition needs 2 real additions, thus

a connection between complex and real complexity numbers can be established:

�

R

= 4�

C

, �

R

= 2�

C

+ 2�

C

, and �

R

= 6�

C

+ 2�

C

.

Multiply-Add Complexity. In addition to instructions for conventional unary

and binary oating-point operations, such as addition, subtraction, multiplication,

division, oating-point to integer conversion, negation, absolute value, and compar-

ison, modern RISC processors (and high-end PC processors) provide fused multiply-

add (FMA) instructions that perform the ternary operation �a� b� c in the same

amount of time needed for a single oating-point addition or multiplication. FMA

instructions have signi�cant performance consequences. With a decoding rate of

one instruction per clock cycle, the peak throughput is two oating-point opera-

tions per cycle for FMA instructions. For individual add and multiply instructions,

it is only one oating-point operation per clock cycle. For processors in FMA ar-

chitecture it is reasonable to regard the more complex multiply-add operation as

another elementary unit of work.

On some modern computer processors, e. g., PowerPC processors, there is no

intermediate rounding operation between the multiply and the add. Because the

result of the multiplication is not rounded prior to the add, the full precision of the

product is kept.

On a processor in FMA architecture a complex multiplication requires 4 in-

structions (2 multiplications and 2 multiply-adds) and a complex addition requires

2 multiply-add instructions. �

fma

denotes the FMA arithmetic complexity, i. e., the

number of multiply-add operations needed to perform a speci�c numerical task. It

holds that

�

fma

� max(�

R

; �

R

): (2.1)

To characterize the degree to which an algorithm takes advantage of multiply-

add instructions, it is useful to introduce the term FMA utilization.

De�nition 3 (FMA Utilization) The FMA utilization is given by

F :=

�

R

� �

fma

�

fma

100 [%]: (2.2)

The FMA utilization can be used to express what percentage of the oating-

point operations is performed by multiply-add instructions.

Cooley-Tukey FFT algorithms require more real additions than real multiplica-

tions. Therefore, in conventional FFT programs it is not possible to schedule all

of the multiplications so that they appear as genuine multiply-add operations. The

number of multiply-add operations always exceeds the number of real additions,

i. e., �

fma

> �

R

. An inferior FMA utilization is unavoidable.

Related Work. In 1993 Linzer and Feig

11 12

introduced scaled radix-2, radix-

4, and split-radix FFT algorithms with �

fma

= �

R

. In these algorithms scaled
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twiddle-factors

f

!

k

N

:= !

k

N

=�

N;k

(2.3)

are used. The scaling by means of

�

N;k

:= max(j cos(2�k=N)j; j sin(2�k=N)j) (2.4)

brings about that either the real or the imaginary part of

f

!

k

N

is normalized such that

it has absolute value 1. Thus every complex multiplication by

f

!

k

N

is accomplished

by two genuine multiply-add operations.

Disadvantages of scaled FFT algorithms are their high program complexity

12

and their high computational e�ort. Increased run times are caused by the di-

vision operations which are 10{30 times slower than addition or multiplication

operations.

18

Division operations cause a stall of the oating-point pipeline of RISC

processors and|if possible|should be avoided.

In 1997 Goedecker

3

published scaled radix-2, radix-3, radix-4, and radix-5 FFT

kernels with a lower program complexity than the algorithms proposed by Linzer

and Feig.

11 12

In contrast to the algorithms introduced in this paper, Goedecker's kernels

require extra load operations and need additional workspace. The necessity for

time-consuming division operations, needed to scale the twiddle-factors, makes

Goedecker's FFT kernels unsuitable for FFT programs using on-line computed

twiddle-factors. Additionally, to avoid division by zero exceptions, cautious han-

dling of trivial twiddle-factors is required.

3. Kronecker Products

The use of Kronecker products o�ers a unifying basis for the description of FFT

algorithms. VanLoan

19

used Kronecker product formulations in his 1992 state

of the art presentation of FFT algorithms. In the twenty-�ve years between the

publications of Pease

14

and VanLoan

19

, only a few authors used this powerful

technique: Temperton

17

and Johnson et al.

6

for FFT implementations on classic

vector computers and Norton and Silberger

13

on parallel computers with MIMD

architecture. Recently, Gupta

4

and Pitsianis

15

used Kronecker product formulations

to synthesize FFT programs.

The Kronecker product approach makes it easy to modify FFT algorithms by

exploiting the underlying algebraic structure of its matrix representation. This is

in contrast to the usual signal ow approach where no well-de�ned methodology for

modifying FFT algorithms is available.

De�nition 4 (Kronecker Product) The Kronecker product (direct product or

tensor product) of the matrices A 2 C

m

1

�n

1

and B 2 C

m

2

�n

2

is the block structured

matrix

A
B :=

0

B

@

a

0;0

B : : : a

0;n

1

�1

B

.

.

.

.

.

.

.

.

.

a

m

1

�1;0

B : : : a

m

1

�1;n

1

�1

B

1

C

A

2 C

m

1

m

2

�n

1

n

2

:
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Kronecker products have the following algebraic properties (Horn, Johnson

5

).

Associativity. If A, B, C are arbitrary matrices, then

(A
B)
 C = A
 (B 
 C):

Thus, the expression A
B 
 C is unambiguous.

Mixed-Product Property. If A, B, C, D are arbitrary matrices for which the

products AC and BD are de�ned, then

(A
B) (C 
D) = AC 
BD: (3.5)

4. Stride Permutations

Stride permutations are frequently used tools in Kronecker product representa-

tions of FFT algorithms.

De�nition 5 (Stride Permutation) For a vector x 2 C

mn

the stride permuta-

tion L

mn

n

is de�ned by

L

mn

n

x :=

0

B

B

B

@

x(0 : n : (m� 1)n)

x(1 : n : (m� 1)n+ 1)

.

.

.

x(n� 1 : n : mn� 1)

1

C

C

C

A

:

The permutation operator L

mn

n

sorts the components of x according to their

index modulo n. Thus, components with indices equal to 0modn come �rst followed

by components with indices equal to 1modn and so on. The notation L

mn

n

indicates

that the elements of a vector of length mn are loaded into m segments each with

stride n.

5. DFT Matrix

The discrete Fourier transform (DFT) is de�ned by the special matrix-vector

product y = F

N

x.

De�nition 6 (Discrete Fourier Transform) The DFT vector

y = (y

0

; : : : ; y

N�1

)

>

2 C

N

of the data vector

x = (x

0

; : : : ; x

N�1

)

>

2 C

N

is de�ned by

y

k

:=

N�1

X

j=0

!

kj

N

x

j

; k = 0 : N � 1; (5.6)

where

!

N

:= cos(2�=N)� i sin(2�=N) = e

�2�i=N

; i =

p

�1:
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The powers of !

N

are called phase-factors or twiddle-factors (Gentleman and

Sande

2

). They constitute the elements of the DFT matrix, i. e.,

[F

N

]

k;j

:= !

kj

N

= e

�2�ikj=N

; k; j = 0 : N � 1:

6. Fundamental Factorization

The key idea behind FFT algorithms is to use the divide-and-conquer paradigm.

N point DFTs are split into successively smaller DFTs.

Theorem 1 (Fundamental Splitting) (Johnson et al.

6

) For N = pk � 2

F

N

= (F

p


 I

k

)T

pk

k

(I

p


 F

k

)L

pk

p

;

with

T

pk

k

= diag(I

k

;


p;k

; : : : ;


p�1

p;k

);

where




p;k

:= diag(1; !

N

; : : : ; !

k�1

N

):

For N = p

n

, repeated application of Theorem 1 leads to the following factoriza-

tion of the DFT matrix F

p

n

.

Theorem 2 (Fundamental Single-Radix Factorization) (Johnson et al.

6

)

F

p

n

=

h

n

Y

i=1

(I

p

i�1

 F

p


 I

p

n�i
)(I

p

i�1

 T

p

n�i+1

p

n�i

)

i

R

p

n

: (6.7)

This factorization enables the splitting of a p

n

-point DFT into n DFTs of size p.

The number p is called the radix of the FFT algorithm. The permutation matrix

R

p

n

is the index reversal matrix which is responsible for the permutation of the

input data sequence (see VanLoan

19

).

By using (3.5), i. e., the mixed-product property of the Kronecker product, the

expression

(I

p

i�1

 F

p


 I

p

n�i
)(I

p

i�1

 T

p

n�i+1

p

n�i

)

can be written as

I

p

i�1

 ((F

p


 I

p

n�i
)diag(I

p

n�i
;


p;p

n�i
; : : : ;


p�1

p;p

n�i

)):

The matrix

B

p;p

n�i+1
:= (F

p


 I

p

n�i
)diag(I

p

n�i
;


p;p

n�i
; : : : ;


p�1

p;p

n�i

)

is said to be a radix-p buttery matrix . Using this matrix, (6.7) becomes

F

p

n

=

h

n

Y

i=1

(I

p

i�1

B

p;p

n�i+1
)

i

R

p

n

: (6.8)

If x 2 C

N

and N = p

n

, the FFT computation x := F

p

n

x can be implemented as

6



Algorithm 1 (Radix-p FFT)

x := R

p

n

x

do i = 1 : n

L := p

i

r := N=L

do k = 0 : r � 1

x(kL : (k + 1)L� 1) := B

p;L

x(kL : (k + 1)L� 1)

end do

end do

The decisive part of any radix-p FFT algorithm is x := B

p;L

x, i. e., the buttery

update which occurs in the innermost loop. Thus the arithmetic complexity of

any radix-p FFT algorithm primarily depends on design and implementation of the

buttery kernel.

7. Radix-2 Buttery Computation

Binary algorithms, in which the number of points is a power of two, are by far

the most widely used FFT algorithms. The radix-2 buttery update can be written

as the two-dimensional matrix-vector product

�

x(j)

x(j + L=2)

�

:=

�

1 !

j

L

1 �!

j

L

��

x(j)

x(j + L=2)

�

(7.9)

with j = 0 : L=2� 1. Consequently, x := B

2;L

x can be implemented as

Algorithm 2 (Radix-2 Buttery)

do j = 0 : L=2� 1

� := !

j

L

x(j + L=2)

x(j + L=2) := x(j)� �

x(j) := x(j) + �

enddo

Complexity. The elementary radix-2 buttery computation of Algorithm 2

involves one complex multiplication (�

C

= 1) and two complex additions (�

C

= 2),

i. e., 10 real oating-point operations (�

R

= 10). On a computer with multiply-add

architecture the computation involves 2 multiply-add operations, 2 multiplications,

and 4 additions. Accordingly �

fma

= 8 and the FMA utilization F is a mere 25%.

The real arithmetic complexity of the entire radix-2 FFT computation is �

R

=

5N log

2

N or, on a computer with FMA architecture, �

fma

= 4N log

2

N .

FMA Optimized Radix-2 Buttery Computation. Since

�

1 !

j

L

1 �!

j

L

�

=

�

2 �1

0 1

��

1 0

1 �!

j

L

�

(7.10)

the radix-2 buttery update x := B

2;L

x can alternatively be implemented as

7



Algorithm 3 (FMA Optimized Radix-2 Buttery)

do j = 0 : L=2� 1

x(j + L=2) := x(j)� !

j

L

x(j + L=2)

x(j) := 2x(j)� x(j + L=2)

end do

Complexity. Using factorization (7.10) an elementary radix-2 buttery compu-

tation requires 12 real oating-point operations (�

R

= 12). On an FMA processor,

Algorithm 3 involves 6 multiply-add operations (�

fma

= 6), leading to the highest

possible FMA utilization of 100%.

The arithmetic complexity of the entire FMA optimized radix-2 FFT algorithm

is �

R

= 6N log

2

N or, on a computer with FMA processor, �

fma

= 3N log

2

N which

yields a complexity reduction by 25%.

Radix-4 and Split-Radix Kernels. The method presented above can be applied

to radix-4 and split-radix kernels as well (see Karner et al.

8

). Their arithmetic

complexity is shown in Table 1.

On a computer which has FMA instructions, the multiply-add optimized radix-4

buttery computation requires fewer memory accesses as well as fewer oating-point

operations than a conventional Cooley-Tukey radix-4 buttery update, assuming

that the twiddle-factors are pre-computed and stored in an array. If the twiddle-

factors are calculated on-line, the advantages of the new algorithms are even greater,

since only two twiddle-factors have to be calculated instead of the three twiddle-

factors needed by conventional Cooley-Tukey radix-4 buttery updates.

8. Radix-3 Buttery Computation

Conventional Cooley-Tukey radix-3 buttery kernels require 28 real oating-

point operations (�

R

= 28) (Temperton

17

). On FMA processors the computation

involves 22 oating-point operations (�

fma

= 22), leading to an FMA utilization of

only 27%.

The arithmetic complexity of the entire Cooley-Tukey radix-3 FFT algorithm is

�

R

= 9:33N log

3

N or, on a computer with FMA processor, �

fma

= 7:33N log

3

N .

FMA Optimized Radix-3 Buttery Computation. The radix-3 buttery

update x := B

3;L

x can be written as

0

@

x(j)

x(j + L=3)

x(j + 2L=3)

1

A

:= F

3

diag(1; !

j

L

; !

2j

L

)

0

@

x(j)

x(j + L=3)

x(j + 2L=3)

1

A

(8.11)

with j = 0 : L=3� 1: Utilizing Winograd's convolution

20

(8.11) can be evaluated as

follows.

x(j) := !

0

3

[x(j) + !

j

L

x(j + L=3) + !

2j

L

x(j + 2L=3)]

x(j + L=3) := !

0

3

x(j) + w

1

x(j + 2L=3) := !

0

3

x(j) + w

2

; (8.12)

8



where

�

w

1

w

2

�

:=

�

!

1

3

!

2

3

!

2

3

!

1

3

�

diag(!

j

L

; !

2j

L

)

�

x(j + L=3)

x(j + 2L=3)

�

: (8.13)

The convolution (8.13) can be factorized into

�

t

1

t

2

�

:=

 

!

1

3

+!

2

3

2

!

1

3

�!

2

3

2

!

�

1 !

2j

L

1 �!

2j

L

�

diag(!

j

L

; 1)

�

x(j + L=3)

x(j + 2L=3)

�

�

w

1

w

2

�

:=

�

1 1

1 �1

��

t

1

t

2

�

: (8.14)

Let c

1

:= (!

1

3

+!

2

3

)=2 = �1=2, and c

2

:= (!

1

3

�!

2

3

)=2 = �i

p

3=2. Using factorization

�

1 !

2j

L

1 �!

2j

L

�

=

�

2 �1

0 1

��

1 0

1 �!

2j

L

�

; (8.15)

the FMA optimized radix-3 buttery update can now be calculated using the fol-

lowing algorithm.

Algorithm 4 (FMA Optimized Radix-3 Buttery)

do j = 0 : L=3� 1

z

1

:= !

j

L

x(j + L=3)

s

1

:= z

1

� !

2j

L

x(j + 2L=3); s

2

:= 2z

1

� s

1

s

3

:= s

2

+ x(j)

s

4

:= x(j) + c

1

s

2

s

5

:= s

4

� c

2

s

1

; s

6

:= 2s

4

� s

5

x(j) := s

3

x(j + L=3) := s

6

x(j + 2L=3) := s

5

end do

Complexity. This elementary radix-3 buttery update involves 32 real oating-

point operations (�

R

= 32). On an FMA processor the computation involves 18

oating-point operations (�

fma

= 18), leading to an FMA utilization of 78%.

The arithmetic complexity of the entire multiply-add optimized radix-3 FFT

algorithm is �

R

= 10:67N log

3

N or, on a computer with FMA processor, �

fma

=

6N log

3

N .

9. Radix-5 Buttery Computation

Conventional Cooley-Tukey radix-5 kernels require 68 real oating-point oper-

ations (�

R

= 68) (Temperton

17

). On an FMA processor the computation involves

52 oating-point operations (�

fma

= 52), leading to an FMA utilization of 31%.

The arithmetic complexity of the entire Cooley-Tukey radix-5 FFT algorithm is

�

R

= 13:6N log

5

N or, on a computer with FMA processor, �

fma

= 10:4N log

5

N .
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FMA Optimized Radix-5 Buttery Computation. The radix-5 buttery

update x := B

5;L

x, x 2 C

L

can be written as

0

B

B

B

B

@

x(j)

x(j + L=5)

x(j + 2L=5)

x(j + 3L=5)

x(j + 4L=5)

1

C

C

C

C

A

:= F

5

diag(1; !

j

L

; !

2j

L

; !

3j

L

; !

4j

L

)

0

B

B

B

B

@

x(j)

x(j + L=5)

x(j + 2L=5)

x(j + 3L=5)

x(j + 4L=5)

1

C

C

C

C

A

with j = 0 : L=5 � 1: Using Winograd's cyclic convolution

20

and a factorization

similar to (7.10) the FMA optimized radix-5 buttery update can be calculated

using the following algorithm. (A detailed derivation can be found in Karner et al.

9

).

Algorithm 5 (FMA Optimized Radix-5 Buttery)

do j = 0 : L=5� 1

z

0

:= x(j)

z

1

:= !

L

x(j + L=5)

z

2

:= !

2j

L

x(j + 2L=5)

s

1

:= z

1

� !

4j

L

x(j + 4L=5); s

2

:= 2z

1

� s

1

s

3

:= z

2

� !

3j

L

x(j + 3L=5); s

4

:= 2z

2

� s

3

s

5

:= s

2

+ s

4

; s

6

:= s

2

� s

4

s

7

:= z

0

� c

1

s

5

s

8

:= s

7

� c

2

s

6

; s

9

:= 2s

7

� s

8

s

10

:= s

1

+ c

3

s

3

; s

11

:= c

3

s

1

� s

3

x(j) := z

0

+ s

5

; t

1

:= s

9

� ic

4

s

10

x(j + L=5) := 2s

9

� t

1

; t

2

:= s

8

� ic

4

s

11

x(j + 2L=5) := 2s

8

� t

2

x(j + 3L=5) := t

2

x(j + 4L=5) := t

1

enddo

with

c

1

= 1=4; c

2

=

p

5=4; c

3

=

q

(5�

p

5)=(5 +

p

5); c

4

= 1=2

q

(5=2 +

p

5=2):

Complexity. This radix-5 buttery algorithm involves 78 real oating-point

operations (�

R

= 78). On an FMA processor the computation involves 44 oating-

point operations (�

fma

= 44), leading to an FMA utilization of 77%.

The arithmetic complexity of the entire multiply-add optimized radix-5 FFT

algorithm is �

R

= 15:6N log

5

N or, on a computer with FMA processor, �

fma

=

8:8N log

5

N .

10. Minimum FMA Complexity FFT Algorithms

Since addition operations predominate multiplication operations in the elemen-

tary Cooley-Tukey buttery computation, the number of addition operations re-

quired, �

R

, yields a lower bound for the achievable FMA complexity.
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Radix-2 Buttery Computation. The elementary Cooley-Tukey radix-2 but-

tery update requires �

R

= 6 additions. Since the multiply-add optimized radix-2

buttery update also requires �

fma

= 6 FMA operations, Algorithm 3 is FMA opti-

mal , i. e., there is no possibility of computing elementary radix-2 buttery updates

with less FMA operations.

Radix-3 and Radix-5 Buttery Computation. The elementary Cooley-Tukey

radix-3 buttery update requires �

R

= 16 additions; Algorithm 4 needs �

fma

= 18

FMA operations, i. e., its complexity is 12:5% higher than the optimum complexity.

The elementary Cooley-Tukey radix-5 buttery update needs �

R

= 40 additions;

Algorithm 5 needs �

fma

= 44 FMA operations, i. e., 10% more operations than the

minimum.

11. Experimental Results

Numerical experiments were performed on one processor of an SGI Power Chal-

lenge XL R10000. In these experiments newly developed FMA optimized radix-3

and radix-5 FFT algorithms were compared with the double precision routine fftw

from the package Fftw.

a

Since the radix-2 kernel is memory bound on the SGI Power Challenge it was

not included in the numerical experiments.

3

The multiply-add optimized FFT routines were implemented in C (double pre-

cision) using pre-computed twiddle-factors (just like Fftw).

Normalized FMA Arithmetic Complexity. A useful normalization of the

FMA arithmetic complexity is given by

�

fma

:=

�

fma

N logN

;

where N denotes the length of the transform.

Normalized values of the FMA arithmetic complexity of Fftpack

b

, Fftw, and

FMA optimized programs for radix-3 FFTs are shown in Figure 1, and for radix-5

FFTs in Figure 2. These complexity numbers were measured using the performance

monitor counter (PMC) of the MIPS R10000 processor, special registers able to

count various types of events such as issued and graduated instructions.

Due to the fact that Fftw and Fftpack avoidmultiplications by trivial twiddle-

factors, Fftw and Fftpack achieve lower complexity values for shorter transform

lengths than for longer transform lengths. The newly developed FFT routines have

not been optimized yet with respect to their handling of trivial twiddle-factors and

therefore their normalized arithmetic complexity remains constant.

a

Fftw is a public domain FFT package available via Netlib. At present Fftw is the fastest

publicly available FFT package.

b

Fftpack is a public domain FFT package available via Netlib. Fftpack is the most widely

used FFT package.
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Fftw

Fftpack

FMA optimized FFT

Normalized Complexity

Length N of the data vector

3

9

3

8

3

7

3

6

3

5

3

4

3

3

9

8

7

6

5

Fig. 1. Normalized FMA arithmetic complexity of radix-3 FFT algorithms

Fftw

Fftpack

FMA optimized FFT

Normalized Complexity

Length N of the data vector

5

6

5

5

5

4

5

3

5

2

12

11

10

9

8

Fig. 2. Normalized FMA arithmetic complexity of radix-5 FFT algorithms
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Normalized Execution Time. The normalized execution time is given by

T :=

T

N logN

;

where T denotes the run time, and N the length of the transform. Measured values

of the normalized execution time are shown in Figures 3 and 4.

Fftw

FMA optimized FFT

ns

Normalized Run Time

Length N of the data vector

3

9

3

8

3

7

3

6

3

5

3

4

3

3

90

80

70

60

50

40

Fig. 3. Normalized execution time of radix-3 FFT algorithms in nanoseconds

Fftw

FMA optimized FFT

ns

Normalized Run Time

Length N of the data vector

5

6

5

5

5

4

5

3

5

2

120

110

100

90

80

70

Fig. 4. Normalized execution time of radix-5 FFT algorithms in nanoseconds

Both, radix-3 and radix-5 run time experiments show that as long as the required

data can be held in primary cache a considerable speedup can be achieved by using

the FMA optimized kernels. If cache misses make memory accesses more expensive,

which happens for longer transform lengths, the performance gain of the new kernels

becomes smaller.
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12. Conclusion

On computer processors with multiply-add capability, i. e., on most high-

performance processors, the new multiply-add optimized FFT algorithms have lower

operation counts and lower execution times than well-established conventional FFT

algorithms.

Table 1. Arithmetic complexity of elementary buttery updates.

Algorithm �

R

�

fma

FMA

Utilization

CT (Fftpack) radix-2 10 8 25%

Fftw radix-2 10 8 25%

FMA optimized radix-2 12 6 100%

CT (Fftpack) radix-4 34 28 21%

Fftw radix-4 34 28 21%

FMA optimized radix-4 48 24 100%

CT split-radix 24 20 20%

FMA optimized split-radix 36 18 100%

CT (Fftpack) radix-3 28 22 27%

Fftw radix-3 30 24 25%

FMA optimized radix-3 32 18 78%

CT (Fftpack) radix-5 68 52 31%

Fftw radix-5 78 58 34%

FMA optimized radix-5 78 44 77%

Table 1 shows a comparison between conventional Cooley-Tukey (CT) kernels

(used, for instance, by Fftpack), the kernels used by Fftw, and the new FMA op-

timized kernels introduced in this paper. Precise information about FMA optimized

radix-4 and split-radix FFT algorithms can be found in Karner et al.

8

To sum up, it can be said that the advantages of the new multiply-add opti-

mized FFT algorithms presented in this paper are their low complexity, their high

e�ciency on modern computer systems, their striking simplicity, and their e�ec-

tiveness for utilizing on-line computed twiddle-factors.
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